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Abstract
We use nonequilibrium renormalization group (RG) techniques to analyse the
thermalization process in quantum field theory, and, by extension, reheating
after inflation. Even if at a high scale � the theory is described by a non-
dissipative λϕ4 theory, and the RG running induces nontrivial noise and
dissipation. For long wavelength and slowly varying field configurations,
the noise and dissipation are white and ohmic, respectively. The theory will
then tend to thermalize to an effective temperature given by the fluctuation-
dissipation theorem.

PACS numbers: 98.80.Cq, 11.10.Hi, 11.10.Jj

The goal of this paper is to show how nonequilibrium renormalization group (RG) techniques
may be applied to study the thermalization process in quantum field theory and, by extension,
the turbulent reheating period in inflation.

The issue of thermalization in quantum field theory has received renewed attention in
recent years, motivated by applications to cosmology and to relativistic heavy ion collisions,
as well as by theoretical progress through large scale numerical experiments [1]. However,
there is a lack of analytical, model robust methods capable of yielding predictions for such
observables as the final temperature and thermalization time scales. This need is particularly
felt in applications to cosmology, since reheating is more likely than not a complex phenomena
involving several nonlinear fields and the evolving background geometry [2].

During inflation, the dominant form of matter in the Universe is a condensate (the inflaton)
which evolves rolling down the slope of its effective potential. When the inflaton nears the
bottom of the potential well, it begins to oscillate and transfers its energy to ordinary matter
(then in its vacuum state). We call this process reheating. Reheating proceeds through
several stages [3] correlated with the different stages of the thermalization process, namely
preheating, inflaton fragmentation and turbulent thermalization. Generally speaking, the early
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phases produce a spectrum with high occupation numbers in a narrow set of modes. Turbulent
thermalization concerns the spread of the spectrum over the full momentum space and the
final achievement of a thermal shape.

At early times occupation numbers are high and the process may be described in terms
of classical wave turbulence [4]. As the spectrum spreads occupation numbers fall and the
classical approximation breaks down. The challenge for us is to provide a quantum description
of turbulent reheating.

For demonstration processes, we shall only discuss quantum turbulent thermalization in
a nonlinear scalar field theory in (3 + 1) flat spacetime.

The basic idea is the same as in Kolmogorov–Heisenberg turbulence theory: a mode
of the field with wave number k lives in the environment provided by all modes with wave
number k′ > k. Since the physical mechanism for damping in the long wavelength sector is
the interaction with shorter wavelength modes, it is natural to understand damping as a feature
of the effective theory where the shorter modes have been coarse-grained away [5, 6]. Since
this operation will leave the long wavelength modes in a mixed state, the natural description
of the relevant sector is in terms of a density matrix [7], and the natural action functional
encoding the effective dynamics is the Feynman–Vernon influence functional (IF) [8, 9]. Now
suppose we are given the IF when all modes k > � have been coarse-grained away, and we
wish to further coarse grain the modes in the range � � k > k0. We split the desired range
into shells of infinitesimal thickness δs, and integrate out each shell retaining only terms of
order δs. Adding a change of units and a rescaling of the fields after each integration, we
transform the shell coarse-graining into a RG flow in the space of influence functionals [10].
Because we shall not assume equilibrium conditions, this may be called the nonequilibrium
RG.

Here � is not meant as an ultraviolet cutoff to be removed eventually, but rather as the
‘hard’ scale at which the microscopic theory is well understood and radiative corrections are
perturbative. Our goal is to investigate physics at ‘soft’ scales k0 � �. This issue has been
studied in the context of hot nonabelian plasmas, where the emergence of dissipation and noise
has been demonstrated in different ways [11–13]. We wish to emphasize the nonequilibrium
aspects of the problem, as well as to put those findings on a more general base by adopting
the RG approach.

It is important to stress two basic differences between the nonequilibrium and equilibrium
RG [14]. The IF may be regarded as an action for a theory defined on a ‘closed time path’
(CTP) composed of a first branch (going from the initial time t = 0 to a later time t = T when
the relevant observations will be performed—that is why we need the density matrix at T) and
a second branch returning from T to 0 [15–18]. Thus each physical degree of freedom on the
first branch acquires a twin on the second branch—we say the number of degrees of freedom
is doubled. The IF is not just a combination of the usual actions for each branch, but also
admits direct couplings across the branches. The damping constant κ and the noise constant ν

are associated with two of those ‘mixed’ terms. Therefore, the structure of the IF (from now
on, CTP action, to emphasize this feature) is much more complex than the usual Euclidean or
‘IN-OUT’ action.

The second fundamental difference is the presence of the parameter T itself. In
nonequilibrium evolution, it is important to specify the time scale over which we shall observe
the system. The CTP action contains this physical time scale T. From the point of view of
the RG, this adds one more dimensional parameter to the theory, much as an external field
in the Ising model. Physically, because time integrations are restricted to the interval [0, T ],
energy conservation does not hold at each vertex. This is of paramount importance regarding
damping.
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The RG for the CTP effective action (obtained by taking the limit T → ∞) was studied
by Dalvit and Mazzitelli [19, 20]; see also [6] and [7]. Unlike those works, we focus on
the dissipation and noise features of the effective dynamics, rather than in the running of the
effective potential.

In formulating a nonequilibrium RG, we must deal with the fact that the CTP action
may have an arbitrary functional dependence on the fields and be nonlocal both in time
and space. In principle, one can define an exact RG transformation [19], where all three
functional dependences are left open. However, the resulting formalism is too complex to be
of practical use. Fortunately, the special properties of the application to thermalization allow
for a substantial simplifications, such as working in three spatial dimensions.

The full RG equations for this theory are given in [21]. Here we shall only highlight those
aspects of the calculation most relevant to the application to turbulent thermalization.

Let us call ϕ± the field variable in the first (resp. second) branch of the CTP. To write
down the CTP action, it is best to introduce average and difference variables

φ = ϕ+ − ϕ−, (1)

ϕ = ϕ+ + ϕ−. (2)

In terms of these variables, a generic CTP action may be written as

SCTP = S0 + Sλ + Sother, (3)

where S0 is the CTP action functional for a free massless field theory

S0[φ, ϕ] = 1

2

∫ T

0
dt

∫
ddk[φ̇(k, t)ϕ̇(−k, t) − k2φ(k, t)ϕ(−k, t)], (4)

Sλ accounts for a λϕ4-type self-interaction

Sλ[φ, ϕ] = − λ

48

∫ T

0
dt

∫
ddk1 · · · ddk4

(2π)d
δd

(
4∑

l=1

kl

)

× [φ(k1, t)ϕ(k2, t)ϕ(k3, t)ϕ(k4, t) + φ(k1, t)φ(k2, t)φ(k3, t)ϕ(k4, t)], (5)

and Sother includes all other possible terms. Momentum integrals are bounded by k = �, and
d = 3. We shall assume that the initial condition for the RG flow is Sother = 0 at the hard scale
�, so that if it appears at soft scales, it is as a consequence of the RG running itself. Note that
this is true, in particular, for the noise and dissipation terms.

To define the nonequilibrium RG we also need to specify the state of the field at the initial
time t = 0. For simplicity, we shall assume this is the vacuum state for the free action S0.
Observe that this is a nonequilibrium state for the interacting theory.

The value λ0 of the coupling constant λ at the hard scale � may be used as the small
parameter in a perturbative expansion of the RG equation. To order λ2

0, the RG equation for
the quartic coupling decouples, and can be solved by itself. The result is that at soft scales k,
λ is both scale and T dependent. There is no RG running if T = 0, while the usual textbook
result is obtained as T → ∞ [22]. For all values of T, λ is driven to zero as k → 0 [21]. Thus
it is consistent to assume that λ is uniformly small in the relevant scale range.

In particular, in order to compute the RG equations to order λ2
0, it will be enough to

use in the Feynman graphs the zeroth order propagators, which are those of the massless free
theory. The only exception is in computing the effective mass, but this calculation is decoupled
from the noise and dissipation terms to order λ2

0. Observe that it is at the same time a huge
simplification and a strong limitation concerning the range of application of our results, as
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we expect substantial shifts in the propagators when T approaches the relaxation time of the
theory.

Because of the nonzero initial value of λ, other couplings will appear as a result of the
RG running. To order λ2

0, it is enough to consider quadratic, quartic and six-point terms in
the action. All these terms feed back into each other, so they must be taken self-consistently.
If we understand thermalization in the usual sense that propagators become approximately
thermal [23], however, it is enough to focus on the quadratic terms,

Sother → S2[φ, ϕ] =
∫ T

0
dt1

∫ T

0
dt2

∫
ddk[v21(k; t1, t2)φ(k, t1)ϕ(−k, t2)

+ iv22(k; t1, t2)φ(k, t1)φ(−k, t2)]. (6)

In principle, the induced quadratic terms will be oscillatory functions of �t1,2. However,
we are interested mostly in the dynamics of slowly varying field configurations which are
insensitive to high frequencies. To focus on the slow dynamics, we may project out the mass,
dissipation and noise terms on which the oscillations are mounted.

To this end, we introduce two projectors. Given a function of two times v(k; t1, t2), we
define

Pv(k; t1, t2) = Pv(k)δ(t1 − t2), (7)

and, if v(k; t1, t2) = 0 for t2 > t1,

Qv(k; t1, t2) = Qv(k)

[
2

(
∂

∂t2
+ δ(t2) − δ(0)

)
δ(t1 − t2)

]
, (8)

where

Pv(k) = 1

T

∫ T

0
dt1

∫ T

0
dt2v(k; t1, t2), (9)

and

Qv(k) = 1

T

∫ T

0
dt1

∫ T

0
dt2 v(k; t1, t2)(t2 − t1). (10)

It is easy to verify that P2 = P, Q2 = Q, and that QP = PQ = 0. This proves that the
decomposition

v(k; t1, t2) = Pv(k; t1, t2) + Qv(k; t1, t2) + 
v(k; t1, t2) (11)

is unique. When this decomposition is applied to v21 in equation (6), we get∫ T

0
dt1

∫ T

0
dt2

∫
ddkv21(k; t1, t2)φ(k, t1)ϕ(−k, t2)

=
∫ T

0
dt1

∫
ddk[v0(k)φ(k, t1)ϕ(−k, t1) + v1(k)φ(k, t1)ϕ̇(−k, t1)]

+
∫ T

0
dt1

∫ T

0
dt2

∫
ddk
v21(k; t1, t2)φ(k, t1)ϕ(−k, t2), (12)

where

v0(k) = Pv21(k) = v0(0) + k
∂v0(0)

∂k
+

k2

2!

∂2v0(0)

∂k2
+ · · · , (13)

and

v1(k) = Qv21(k). (14)
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The linear term in equation (13) vanishes from symmetry, and the appearance of the quadratic
term is prevented by performing a field rescaling as part of the RG transformation (thus the
field acquires an anomalous dimension). Neglecting the last term in equation (12), the net
effect for the long wavelength modes is to induce a mass term m2 = −2v0(0), and a damping
constant κ(k) = −v1(k). The noise kernel is obtained in a similar way from the imaginary
part of the CTP action, v22 in equation (6).

After these considerations, the relevant CTP action for long wavelength, slowly varying
configurations reduces to

SCTP[φ, ϕ] =
∫ T

0
dt

∫
ddk

[
1

2
φ̇(k, t)ϕ̇(−k, t) − 1

2
φ(k, t)

(
k2 + m2

)
ϕ(−k, t)

− κ(k)φ(k, t)ϕ̇(−k, t) +
i

2
ν(k)φ(k, t)φ(−k, t)

]
. (15)

It is shown in Feynman and Hibbs [9] that this CTP action describes a field subject to
ohmic dissipation with damping constant κ and a stochastic source j (t) with white noise
self-correlation 〈j (t)j (t ′)〉 = νδ(t − t ′). The relationship of the propagators of the original
theory to those obtained from this CTP action is discussed in [24]. For present purposes,
it is enough to observe that this system thermalizes to an effective temperature given by the
fluctuation-dissipation theorem [8, 9, 25, 26]

Teff = ν

4κ
, (16)

with a thermalization time

τ = 1

κ
. (17)

For k � � we obtain the approximate expressions [21]

κ(k, T ) ∼ 9

2T

(
λ0

96π2

)2

[7 − 2T 2 − 8 cos T + cos(2T )] ln(�/k), (18)

and

ν (k, T ) ∼ 9

8T

(
λ0

96π2

)2

{135 + 4[γE − 34 ln 2 − 7 ln 3 + 7Ci(3T )] − 3 cos(4T )

+ 4 ln T − 16[8π + 3T − 16Si(2T )] sin T + 4[7π + 6T − 14Si(4T )] sin(2T )

− 12[19 − 4T 2]Ci(T ) + 8[7 − 6T 2]Ci(2T ) + 4[1 − 4T 2]Ci(4T ) − 8 cos(3T )

− 24[7 − 8Ci(2T )] cos T + 4[11 + 2Ci(T ) − 2Ci(2T ) − 14Ci(4T )] cos(2T )

+ 4T [18π − 54Si(T ) + 28Si(2T ) − 6Si(3T ) − 2Si(4T ) + sin(4T )]}, (19)

where Si and Ci are the sin and the cos integral functions. The thermalization time and the
effective temperature go as ln(�/k)−1 when k → 0. Observe that the asymptotic formula for
κ is not positive definite. This suggests that the fundamental damping mechanism is Landau
damping of long wavelength waves through interaction with hard quanta [27]. In any case,
we expect our approximations to break down before we reach the point κ = 0.

In figure 1 we show κ , ν, and Teff as functions of the scale k for fixed T. In figure 2 we
show κ , ν, and Teff as functions of the observation time T for a fixed k. We have chosen units
in such a way that � = 1. The expressions for κ and ν are given in [21].

The most important result of this paper is that RG running alone describes the onset of
noise and dissipation in the long wavelength modes, even if these are not assumed to be present
in the underlying microscopic theory. These two elements provide the sufficient conditions
for thermalization as described by Schwinger [15–18]. Therefore the model succeeds in
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Figure 1. The dissipation constant κ (dashed), the noise ν (dotted), both measured in units of
(λ0/96π2)2, and the effective temperature Teff as functions of the scale k for a fixed value of
T = 0.5.
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Figure 2. The dissipation constant κ (dashed), the noise ν (dotted), both measured in units of
(λ0/96π2)2, and the effective temperature Teff (solid), as functions of T for a fixed value of
k = 1/60. Each quantity is normalized with respect to its maximum value in the displayed interval
(≈215 for κ , 26 for ν and 10 for Teff ).

describing the onset of the thermalization process, and yields simple estimates of both the
final temperature and the thermalization times at different scales. We must caution however
that in this form these estimates are not fully reliable, as they involve pushing the theory to the
range �T � 1. This lies beyond the range of validity of our approximations concerning T. To
extend the nonequilibrium RG to a larger T range a fully self-consistent approach is necessary
[28–30].

Because of this limitation, we do not claim to have solved the problem, but to have shown
a framework for a solution. We need a self-consistent approach to the hard loops to be able
to extend further the T range. Still, the power of the nonequilibrium RG allows us to extend
to the fully quantum regime the insights gained from wave turbulence in the classical stage of
evolution.
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